A KOSLOFF/BASAL METHOD, 3D MIGRATION PROGRAM
IMPLEMENTED ON THE CYBER 205 SUPERCOMPUTER

L. D. PYLE
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF HOUSTON
HOUSTON, TEXAS

S. R. WHEAT
BELL TELEPHONE LABORATORIES
NAPERVILLE, ILLINOIS

Title: A Kosloff/Basal Method, 30 Migration Program Implemented

on the CYBER 205 Supercomputer

Authors: L.D. Pyle* and S.R. Wheat**

ABSTRACT :

Conventional finite-difference migration has relied on approximations to
the acoustic wave equation which allow energy to propagate only downwards.
Although generally reliable, such approaches usually do not yield an accurate
migration for geological structures with strong lateral velocity variations or
w#ith steeply dipping reflectors. An earlier study by D. Kosloff and E. Baysal
(Migration with the Full Acoustic Wave Equation) examined an alternative approach
based on the full acoustic wave equation. The 20, Fourier-type algorithm which
was developed was tested by Kosloff and Baysal against synthetic data and against
physical model data. The results indicated that such a scheme gives accurate
migration for complicated structures. This paper describes the development and
testing of a vectorized, 3D migration program for the CYBER 205 using the
Kosloff/Baysal method. The program can accept as many as 65,536 zero-offset
(stacked) traces. In order to efficiently process a data cube of such magnitude,
(65 million data values), data motion aspects of the program employ the CDC
supplied subroutine SLICE4, which provides high speed input/output, taking advan-
tage of the efficiency of the system-provided subroutines Q7BUFIN and Q7BUFQUT
and of the parallelism achievable by distributing data transfer over four differ-
ent input/output channels. The results obtained are consistent with those of
vosloff and Baysal. Additional investigations, based upon the work reported in
this paper, are in prcgress.

This research was supported by the Control Data Corporation and the Allied
Geophysical Laboratories at the University of Houston.

*Department of Computer Science, Unversity of Houston, Houston, Texas
**Bell Telephoine Laboratories, Naperville, Illinois

327

1.1 THE ROSI.OFF/BAYSAL STUDY

In an attempt to develop a migration technique that did not have
the faults of conventional finite-difference migration techniques,
Kosloff and Baysal introduced a migration technique based on the full
acoustic wave equation ([1]. While conventional finite-difference
techniques used an approximation to the wave equation, they allowed
energy to propagate only downwards. Although these techniques yield
reliableigigration in most cases, they usually do not yield an accurate
migratien for geological structures with strong lateral velocity
variations or with steeply dipping reflectors. The results of the
migration technigue developed by Kosloff and Baysal showed their
technique to be able to accurately migrate these complicated geological
structures. Furthermore, they found that there was no need to invoke
complicated schemes in an attempt to correct the deficiencies of

one-way equations [2].

328

1.2 DESCRIPTION OF THE PRESENT STUDY

Although the technique developed by Kosloff and Baysal provides an
excellent migration algorithm, it still is a two-dimensional migration
technique. The cbject of this research was to extend the 2D migration
technique of Kosloff and Baysal into a 3D migration technique that
would migrate a cube of 65,536 (or less) traces, each of length 1,024
samples. This goal immediately imposed several problems that were much
greater than extending the numerical methods of Kosloff and Baysal. Of
these problems, execution time and data motion were the most
significant. Although the 2D migration of Kosloff and Baysal was
implemented on a Digital Equipment Corporation VAX-11/780 incorporating
a FPS-100 array processor, with favorable processing time, it was
observed that this hardware was much too small to expect it to handle
the 3D technique in a reasonable amount of time. Consequently, for its
high rate of computation, the CDC CYBER 205 located at Colorado State
University (CSU) was chosen to be the target machine. In Chapters II,
IIT and IV, the following aspects of the 3D migration technique are
developed: (1) the numerical metheds involved:; (2) the major features
of the program implementing the 3D migration technique; and (3) the

results of numerical tests of the program.

329

IO THE ROSLOFY/BAYSAL FOURIER TECHNIQUE

2.1 INTRODUCTION

Conventional finite—difference migration has relied on
approximations to the wave equation which allow energy to propagate
only dowrwards. Although generally reliable, such equations usually do
not give accurate migration for structures with strong lateral velocity
variations or with steep dips. The migration technique presented here
is a three—dimensional extension of a two—dimensional migration
technigque developed earlier by Rosloff and Baysal {3]. The migration
technigue presented here, referred to in this paper as the KBF
migration technique (for Kosloff/Baysal Fourier type), is based on the

full acoustic wave equation, (2.1).

:'10’
o
ot
[——]
M
e
°
1>
[—]
i
—
o
R
[S—)
NS
¥Ps

2.2 INRUT

It is assumed that input to the KBF program consists of a “cube"
of zero-offset traces in (x,y;z=0,t) space. The KBF technique
presented here is designed to handie Nx * Ny such traces corresponding
to Nx * Ny uniformly spaced points in the x and the y directions. The

implementation discussed is desigrned so that the following must be trues

32 <= Nx <= 256 and Nx-Ziforsaneintegeri

32 <= Ny <= 256 and Ny = 2J for same integer j

These restrictions were chosen so as to test program efficiency;

they do not apply, in general, to the KBF scheme.

For each (x, y) pair, there will be N\: sample points in time, e

m =1, ..., Nt' at which values of pressure, P(x,y,z=0,t;) are given,

Nl: must also be a power of two.

In equation (2.1) it is assumed that the density, pr 1S constant
and that the velocity function, c(x,y,z), will be provided by the

user. For testing purposes, velocity is given by a Fortran function
subprogram in the code presented in Appendix. Other forms
representing the velocities may be used to replace the supplied

function,

2.3 TE _KSLOFT/BAYSAL TECHNIQUE, IN 3D
GBJECT OF THE PROGRANM

Given P(x, y, z=0, t) for t = 0, lDT, 20T, ..., TMAX
obtain P(x, y, 2, t=0) for z = 0, 1DZ, 2D2, ..., 2MAX

BASIC NOMERICAL FETHOD

Equation (2.1) is Fourier transformed with respect to time,
assuming density, p» 18 constant. The second order transformed
equations can then be reduced to a system of first order equations in
the usual manner. If density is oonstant, then we can write the

following series of equations:

P(x,y,z,t) = F'IP(x,y.z,w)

332

vhere

- 6] [3e Q8] =

wvhere

v - %)2?:, 253,2 (2.3)

which is of the form

g"— = f(z,v) (2.4)

333

The expression "transformed with respect to time® means that the

functions Plx,y.z,tp) are represented by Discrete Fourier
Transforms:
Ne
Pix,y,2 ptm) = Z i(XOYr z'wi)ejVﬂ'-m (2.6)
i=1
vhere

(m1) Dr form=], 2(-oor-;]-: + 1
t =
m (m-(N,+1))DT for m = 12& +2, ceey N

P is given by the Inverse Discrete Fourier Transform:
Ne

Bix,y,z,w;) = %,-; 2 Pix,y.2,ty) e Vitm 2.7
m=l

where
20 (i-1) foris=1,2, .., N 41
DIN, 2

1 2@ (i-(N + 1) for =Nt 42, L, N
BTN, 2

334

DT is the sampling interval in time; j = J[;. Equation (2.6) is then
substituted in (2.1). ‘This results in (2.2), which must be satisfied
for each T for i =1, '?‘ + 1,

Thus, the N, partial differential equations which provide a
discrete approximation to (2.1), involving unknown functions
P(x,y,2z,t) are replaced by Bt 41 partial differential equations
involving unknown functions P(x?y,z,wi) . Note that in the transformed
equations, dependence on time, t, has been eliminated.

With an appropriate approximation to Vb = gz;; + %g

the "classical® 4™ order Runge-Kutta algorithm is applied to integrate
equation (2.2) numerically in z. The (vector) computational equations
are summarized below:

Kl =Dz * f(z, Vord
K2 =Dz * £(z + 32 vy q + 30
K3=Dz*f(z+ 22y + 50
K4 =Dz * £(z + Dz, Voig t K3

Vnew ™ Vold + (K1 + 2K2 + 2K3 + K4) / 6

335

2.4 KBF DESIGN QUTLINE

The program has four main subdivisions, whose tasks are summarized

below:

Part I: For each pair of (x,y) values, the corresponding
zero—offset trace of P(x,y,0,t) values is converted to another "trace"”
of B(x,y,0,w) values by application of the discrete Fourier transform

(2.7).

Part II: For each w; value (i=1,2,...,Np) the ﬁ(x,y,o,wi) values
are re—-ordered into w;-slices organized either sequentially in y for
each x, or sequentially in x for each y, as appropriate for further

transformations.

Part II1: Each w;-slice, from the transformed input cube of
?(x,y,o,wi) values (see Figure 2.1), is developed into an (X,y,z,w;)
cube of ﬁ(errszi) values. This development is performed by
integrating equation (2.2) numerically. The resulting ?(x,y,z,wi)
values are accumulated for all w; for each (x,y,z) combination. Since
all the related exponential multipliers ed™itl equal 1 in magnitude
(see equation (2.6)), this results in the generation of P(x,y,z,t=0)

values, as required. (Note: k=0

336

P

{——=— w-slice

Note: =z = 0 throughout this data cube.

Figure 2.1
Transformed Input Cube

There are two sub-prcoblems of Part III:

Part JII.,1: Initial values for ég—are obtained by the application

of a two-dimensional Fourier transform to P followed by multiplicaticn
5 :

by SQRT[-1 * (u2 - VA]. Evanescent energy components are then

c
eliminated and %g— is obtained by the application of a 2-dimensional

inverse Fourier transform to %5:

337

Part I11.2: B(x,y,z,w) and g%-(x,y,z,w) are propagated fram z to z+
Yz using the Runge-Kutta 4th order method to integrate equation (2.2)

numerically. To do this

v2p=§§+ gz;

must be approximated four times for each Vz. This is achieved by the
use of a two~dimensional Fourier transform, followed by multiplication
by -(kx2 +ky2). Evanescent energy is eliminated fram P by applying a
two—dimensional Fourier transform to B, obtaining P. For all (Kx,xy)
pairs such that sz + KY2 > wi/clx,y,2), P is set to zero. 'Then a
two-dinensional inverse Fourier transform is applied to yield B', which
is input to the next step of numerical integration. Evanescent energy

is also removed fram %‘:—in the same manner.

Part IV: For each (x,y), the P(x,y,z,t=0) values in Part III are
retrieved so as to be contigquous in Z. These space traces are each
Fourier transformed and the downgoing energy is eliminated by filtering
out components with negative wave numbers K,. The resulting filtered
traces are inverse Fourier transformed, retaining only the real part of

the result, which is the desired 3D depth migration.

338

III PROGRAM [ESIGR FEATURES

3.1 INTRODUCTION

The speed and capacity of the computer available to an individual
researcher imposes certain restrictions on the types of problems that
can be solved. The CYBER 205's vector features and high speed scalar
processor provide a tool for solving problems in a matter of minutes
that would take on the order of days on a conventional scalar machine
(this speed increase depends, to a considerable extent, on the degree
to which it is possible to "vectorize"™ the scalar code). Of the
problems that can now be solved using the CYBER 205, the migration
application presented here makes extensive use of the CYBER 205's
vector facilities. This chapter contains an overview of vector
processing on the CYBER 205 and an in—depth discussion of the data-flow

required by the KBF migration algorithm.

339

3.2 QONCEPTS OF VECTOR PROCESSING

This section deals primarily with the concept of vector machines;
however, it is not within the scope of this paper to bring the novice
up-to-date on vector computing. Several texts and papers have been
written to perform that task. Hockney and Jesshope [4] present a
comprehensive text covering vector and parallel processors as well as
vector and parallel algorithms. Section 2.3 of Bockney and Jesshope
[5] is dedicated to the (DC CYRER 205. For more information on the

CYBER 205, see also Kascic [6].

THE OOC CYBER 205, HISTORY

The CYBER 205, announced in 1980, replaced its predecessor, the
CYBER 203. In turn, the CYBER 203, introduced in 1979, was a
re—engineered version of the STAR 100. Conceived in 1964, the first
STAR 100 became operational in 1973. The instruction set for the
vector operations in the STAR 100 were based, primarily, on the AFL
language. The STAR 100 was designed to execute at a rate of 100
Mega-flops (1 Mega-flop = one million floating point instructions

executed per second).

340

THE OOC C(YBER 205, DESIGH

The CYBER 205 is a member of the family of "pipelined" machines.
Pipeline refers to an assembly-line style of performing certain
operations; thus more than one set of operands can be operated upon at
a time. The vector processor of the CYBER 205 has what are known as
vector pipes. These vector pipes are designed to stream contiguous
data elements (vectors) through their pipelines. Presently, the CYBER
205 can have as many as four vector pipes, all of which can operate
concurrently. A four pipe CYBER 205, processing 32-bit words, can

operate at a peak rate of 800 mega-flops.

The various data types utilized by the CYBER Fortran 2.0 language
include the following:

Type Comments

Bit the machine is bit addressable

Half-word : 32-bit floating point

Full-word : 64-bit floating point; 64-bit integer
Double-precision : 128-bit floating point

Complex : two consecutive 64-bit words

341

VECTOR OPERATIONS AND CONSIDERATIONS

Vectors on the CYBER 205 are "pointed to™ by vector descriptors.

A vector descriptor is a 64-bit entity with the following two fields:

(1) Vector length, which consists of 16 bits and (2) Virtual address of

the first vector element, which consists of the remaining 48 bits.

Thus, a vector can have a length ranging fram 0 to 65,535.

Note that a

bit vector can be no longer than 65,535 elements even though it

consists of only 1024 64-bit memory words.

Vector operations come in a variety of forms on the CYBER

same of which are displayed in Table 3.1.

Table 3.1. Vector Operation Examples.

205,

L = 100

NUMBER VECTOR QODE

(1 A(l; L) Q8VINTL(0, 1; L)

(2) B(l; L)

A(l; L) * 20.0

(3) C(1; L) A(l; L)*2.0+B(1; L)

DIMENSION A(100), B(100), C(100)

10

20

30

EQUIVALENT
SCALAR (ODE

D010I=1, L
A(I) =T-1

DD20I1=1,L
B(I) = A(I) * 20.0

D0D301=1,1
C(I)=A(I)*2.0+B(I)

342

The examples in Table 3.1 are rather simple but resemble many
operations in scientific programs. Exanples 1 and 2 show a vector
function call and a vector-scalar operation. Example 3 shows a "linked
triad™ operation. A linked triad opération takes advantage of CYBER
205 hardware which supports such operations. As one can see in Table
3.2, the linked triad operations are quite efficient. An operation is
generally considered a linked triad when it consists of two vector

operands and one scalar operand.

In certain situations, the results of some elements of a vector
operation need not be saved. In this case, there is a mechanism for
avoiding storage which involves a control vector. A control vector is
a bit vector that specifies the storage of vector results. The control
vector will be the same length as the result vector and where it has a
value of one the corresponding result vector element will be saved and
where it has a value of zero the corresponding result vector element
will not be saved. The programmer also has the choice of reversing the

meaning of the one's and zero's in the control vector.

A certain number of clock cycles are needed to set up the vector
pipes. As this setup time is constant for a given operation, it is
more efficient, in terms of total execution time, to reduce the number
of vector operations by 'increasing the vector lengths whenever
possible. Table 3.2 shows the set-up times, as well as the timings for

the actual operations for various operations on the CYBER 205.

343

Table 3.2. Vector Timing Information

Number of Number of
Vector Instruction Set-up Cycles Operating Cycles
Addition, Subtraction 51 N/ 4
Multiplication 52 N/ 4
Division, Square root 80 N/ .61
Linked triad 84 N/ 4

Where:
N = Vector length
1 Cycle = 20 nano-seconds

The vector operations are on 32-bit words

3.3 A NOTE ON THE APPLICATION OF VECTOR PROCESSING TO THE KBF METHOD

The KBF migration technique is such that almost all of the
necessary operations can be vectorized. When working with a particular
w-slice, all of the operations, including the two-dimensional FFT's,
are vector operations. The computations performed at any given point
of the amega-slice must be performed at all of the points. If there is
a certain criteria that causes something different to occur at a given
anega-slice point, a control vector can be created, dynamically, and
the operation can still be performed in a vector manner. An example of

this may be found in the routine CQUTOFF where the evanescent energy is

eliminated. In summary, there is no

particular cperation in the KBF migration scheme that can not be
treated as a vector operation. To enphasize this point, one should
examine the technique presented in chapter 2 and notice that there are
no tricky operations that would prevent vectorization. In particular,
it is inmportant to note that there are no operations that have the
following structure:

DO 100 I =1, N
X(1) = F(Y(I))
IF (X(I) .LT. VAL) GO TO 200
100 QONTINUE
200 CONTINUE

The above code can not be efficiently vectorized because of the
inherently sequential nature of the computations.

345

3.4 DATA CONSIDERATIONS

As previodsly discussed, a program implementing the KBF migration
technique, extended into three dimensions, is easily expressed in terms
of vectof operations. The program developed here contains very few
scalar dperations, many of which are operations needed in order to
control .various vector instructions or vector subroutine calls. Having
such a match of software to hardware, one might conclude that there are
no remaining barriers to running the program. There are, however, a
few major items that one tends to overlook, being overwhelmed by the
computational power of the CYBER 205. The greatest of these is the

data motion required to keep the CYBER 205 vector pipes busy.

One penalty for the use of vector operations is that the data must
be contiguous in memory for greatest efficiency (let alone for some
vector operations to run at all). Furthermore, the vectors must reside
in main memory as much as possible in order to prevent sure death from
thrashing., With this in mind, one must realize that the memory
requirement for the vectors that are necessary to perform a single step
of the integration of one amega slice is quite large. For example, a
(256 by 256) complex XY plane will require eleven vectors of length
131,072 half-words. These, along with various support vectors,
comprise 12 large pages (1 large page = 65,536 full-words). This is
slightly less than half of the memory available to a user on a

346

2fmegaword 205, however it is about all one can expéct.to get fbr any
reasonable period in a time-sharing envirorment. But this is really
just the tip of the iceberg - these are just the work arrays. The
total data set consists of the input data cube, the work arrays, and
the output data cube.

Continuing with the previous example, the input cube could very
well be of size 256%*256*1024 half-words and the output cube could be as
much as twice the size of the input cube (the size of ;he output cube
depends upon the number of ZSTEPS in the migration). This would be a
total of 201,326,592 half-words, which is equivalent to 1536 large
pages. Obviously, this is much more data than any CYBER 205 can have
in memory at any given time. Consequently, the question of how to
handle the data-flow arises. A solution that one may consider is to
declare the data cubes to be huge arrays and to let the virtual memory
mechanism handle the data cubes.

To consider declaring the two data cubes as arrays, oOne must
realize that access to these two arrays would have to be in a
contiguous manner. Otherwise severe thrashing would result. In the
case of the KBF migration algorithm, access to the data cubes must be
done in several ways that would break the rule of contiguous access.
Thus, it would be wise to check into at least one alternate method of

handling these data cubes as large arrays.

Before presenting the data motion method used in this study, the
need for efficiency must be established. Continuing with the previous
example and without discussing the code in detail, the subroutine RHS3
takes on the order of 100 milli-seconds to run, each time it is called.
In this example, RHS3 would be called on the order of 4*512*5]12
(1,048,576) times. The time needed for all of these calls is
approximately 29 hours. Thus, any time for performing the data-motion
is added onto the 29 hours. Therefore, one needs to find a mechanism
to perform the data-motion without making the program run for an

unacceptable amount of time.

343

3.5 A FOUR-WAY PARALLFL DATA MOTION TECHNIQUE

CYBER 205 Fortran provides several routines that may be used to
implement I/0 that runs concurrently with other instructions being
executed as well as with other I/0. These routines include (Q7BUFIN,
Q7BUFOUT, and Q7WAIT. For detailed information on these routines, see
the CDC CYBER 200 FORTRAN VERSION 2 manual (7]. A typical use for

these routines would be as follows:

QIJ.L Q?Bm(......'.."...‘)
CALL mRK(..o-a-a.oo..)

In this example where the programmer wishes to write information
out to a unit and have the routine WORK run concurrently with the I/0.
In general, as long as WORK does not use the I/0 unit referred to in
the Q7BUFOUT call, it can do anything it wishes. Thus, there is CPU

activity concurrent to I/0 activity.

Another example where two I/0 requests cause concurrent 1/0, is as

follows:

QLIJ Q7B[JFIN(.-......¢.'--.)
C‘ALL Q7BUFGJT(.-.....--....-)

349

According to the CDC CYBER FORTRAN 2 manual [8], these calls are
legal, so long as they do not access the same data block on the same
disk. Also, two Q7BUFIN, two Q7BUFOUT calls, or a QJ/BUFIN and a

Q7BUFOUT call can be active at one time for a given unit.

It should be obvious that these "Q7" calls are the basis of a
solution to the problem of data-flow that was presented in the previocus
section. Indeed, they are; yet they are only the basis of the method
used in this study. Dr. Bjorn Mossberg [9], of Control Data
Corporation, wrote a utility known as SLICE4. Mossberg used the ™Q7"
utilities; however, the scheme he developed is much more elaborate

than a series of Q7 calls to a particular I/0 unit.

SLICEA

It is not within the scope of this paper to duplicate Mossberg's
documentation of SLICE4. However, the concept and the terminology of
SLICE4 will be presented as it applies to this study. For efficient
operation, SLICE4 must be tightly integrated into the master program.
Therefore, its terminology affects the view that one takes of the

master program.

In this study, two implementations of SLICE4 were needed and used;
one for the input data cube and one for the output data cube. To
explain the use of SLICE4, only the input data cube will be treated.

The output data cube is‘'handled in a similar manner.

350

SLICE4A TERMINOLOGY

The first step in using SLICE4 is to impose a coordinate system
upon the data cube such that the cube is Nl by N2 by N3 elements in
size, where N1 is the number of elements in what one normally considers
the 2 direction, N2 is the number of elements in the X direction, and
N3 is the number of elements in the Y direction. The next step is to
define a second coordinate system on the data cube. Instead of being
coordinates of individual data items, this second coordinate system
gives ooordinates of “super-blocks." Super-blocks are small cubes of
the original data set. The super-block coordinate system has NSl
super-hlocks in the l-direction, NS2 in the 2-direction, and NS3 in the
3—direction, where NS1 and NS2 must be multiples of four. NS3 does not
have this restriction; however, for greatest efficiency, it should be
one or a multiple of four. The reason for the multiple of four rule is
that the super-blocks will reside on four different I/O units. No
matter which direction the cube is accessed, each I/0 unit will have
one quarter of the super-blocks accessed. This is not the case when
only a partial row or column of super-blocks is accessed; thus, it is
most efficient to access a complete row or colum. If it should happen
that more than one I/0 unit be controlled by a given controller, then
SLICE4 will still execute, but in a less efficient manner (i.e. the
parallelism is partially inhibited). Thus, one may access any four
adjacent super-blocks at a cost which is one fourth the cost of

accessing the same data with conventional techniques.

351

The super-blocks themselves have a coordinate structure imposed
upon them. This coordinate structure is Ll by I2 by IL3. Where Ll is
the number of elements from the data cube in the l-direction; I2 and

L3 are defined in the same manner for their indiv_idual directions.

Summarizing the terminology presented so far, the original data
cube is broken up into NS1 by NS2 by NS3 super-blocks. Each
super-block has L1 by I2 by L3 data elements. Thus the following rules

must apply:

NL =NS1 *L1 with NS1l=4%i, i=>1
N2 =NS2 *L2 with N2=4%*73, j=>1
N3 = NS3 * L3

SUPER-BIOCK MXESS

The rows and columns of super-blocks are referred to as slices. A
l-slice is same column of super-blocks in the l-direction, a 2-slice is
some row of super-blocks in the 2-direction, and a 3-slice is some row
of super-blocks in the 3-direction. One may access all, or just same,
of the super-blocks of a slice via SLICE4. However, in this study,
only the most efficient access is performed - accessing all
super-blocks of a given slice. As access can be by any given slice,
SLICE4 must have the super-blocks all formatted in the same manner.
Thus, when accessing a given slice, the slice is written into a buffer
by SLICE4 and the user must re—-format the data from the buffer into a

work array in the format that corresponds to the direction of access.

352

DIMERSTON (UNRSIDERATIONS

One needs to be careful to have enough array and buffer space to
access the data cube in all the necessary directions. Thus, the size
of the super~block comes into question. The larger the super-block,
the fewer accesses to the data cube are needed and vica versa. In this
study, the L1 dimension was set permanently to the value of 2. The
reason for this is that, as one recalls fram the migration technique, a
complete XY plane is processed at any given time and there is only

enough memory space to have two input planes in memory at the same

time.

353

IV RESULTS AD NOLUSIONS

4.1 EXEQUTION TESTS

As discussed in section 3.4, it would take over 29 hours of
execution time to migrate the maximum (assumed) data cube; thus for
testing purposes, an input cube of size (64x64x64) was used. For both
of the test runs discussed here, all of the traces consisted completely
of zeros, except the center trace that had a single wavelet peaking at
sample 16 (in time). The correctly migrated result, in this case,
consists of a hemisphere. The first run (Figures 1 and 2) incorporated
a padaing in the time direction to delay the wrap-around effect
inherent in Fourier algorithms. The second run (Figures 3 and 4) did
not incorporate a padding - thus, wrap-around effects appeared. The

first run took 240 CPU seconds and the second run took 115 CRU seconds.

Iaat_ml_l: The migration of the input cube described above,
using a constant velocity of 3000 m/s, a Dz interval of 6.0 meters, a
Dx interval of 12.0 meters, a Dy interval of 12.0 meters, and a time
interval of 4.0 milli-seconds, yields the results shown in Figqures 1
and 2. Figures 1 and 2 are slices of the ocutput cube in the XZ and in
the YZ directions, respectively, intersecting at the center of the

output cube (Note the absence of the wrap-around effect).

354

Test Run 2: The migration of the same input cube used in Test Run
1 using tne same sampling rates in all dimensions, but with a velocity
interface (see Figure 3; V1 = 4000 w's; V2 = 3000 m/s), yields the
results displayed in Figures 3 and 4. Note the wrép—éround effect

present in these figures.
4.2 FACTORS AFFECTING SPEED OF COMPUTATION

Until a superior algorithm for performing the I/0 required by the
KBF migration algorithm appears, SLICE4 will remain the most efficient
method available to perform the I/0 task. However, should a CYBER 205
ever be equipped with 8, or even 16, I/0 channels, SLICE4 should easily
be adapted to create SLICE8 and SLICE1l6 versions. Until then, there is

little chance of decreasing the time required to perform the I/0.

Other than I/0, the Runge-Kutta 4th order algorithm employed in
the KBF migration technique is the most expensive feature.
Consequently, use of a less costly method for numerical integration
(e.g., a multi-point method, using the Runge-Rutta method to get

started) might result in increased computational efficiency.

4.3 CONCLUSIONS

The 3D KBF migration program, implemented on the CYBER 205
Supercomputer presented in this thesis, yields results that are
consistent with those of Kosloff and Baysal ([10]. This was confirmed
by Kosloff [11]. Thus, a 3D migration program, using the KBF migration
technique (based on the full acoustic wave equation) permitting lateral

velocity variations is now available for use on the CYBER 205.

355

u;]u |

] 1
i
[
. H ¢
II
!
. Hit el vl
8
4~ H..
el i \ ’
RAMMMA n --L..‘_L_‘_,_ L-- Velocity
: ' 'ﬂ eeeeeeeee
"!I.I:iiii I i
! _ V2

L l"’HU'.HH”H ?'. !1 Wi

1.

3.
4.

5.

9.
10.
11.

Kosloff, D., and E. Baysal, "Migration With the Full Acoustic Wave
Equation,” Seismic Acoustics Iabortory Fifth Year Semi-Annual Progress
Review, No. 9 (1982), pp. 151-165.

Kosloff and Baysal, p. 152.

Rosloff and Baysal, pp. 151-165.

Bockney, R. W., and C. R. Jesshope, Parallel Computers:
Architecture, Programming, and Algorithms (Bristol: Adam Hilger Ltd.,
1981).

Hockney and Jesshope, pp. 95-126.

Kascic, M. J. Jr., ¥Yector Processing On the Cyber 200 (St. Paul:
Control Data Corporation, 1978).

Control Data Corp., CDC Cyber 200 Fortran Version 2 (St. Paul: Control
Data Corporation, 1981).

Control Data Corp.

Control Data Corp., MAGEV Library Utility.

KRosloff and Baysal, p. 155.

Personal interview with Dan Kosloff, 25 August 1983.

358

